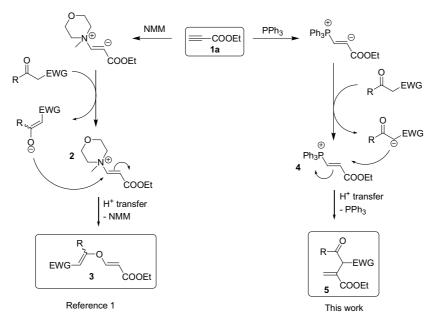


Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 7035-7038

Tetrahedron Letters

α-Addition of activated methylenes to alkynoates. A straightforward synthesis of multifunctional compounds


Mikaël Hanédanian, Olivier Loreau, Frédéric Taran* and Charles Mioskowski*

Service de Marquage Moléculaire et de Chimie Bio-organique, DSV/DBJC/SMMCB CEA Saclay 91191 Gif-sur-Yvette, France

Received 5 July 2004; revised 26 July 2004; accepted 28 July 2004 Available online 12 August 2004

Abstract—The present work describes a simple one pot access to α -(*gem*-difunctional) acrylic esters and to polysubstituted dihydrothiophenes exploiting the addition of activated methylenes to alkynoates rerouted by triphenyl phosphine. © 2004 Elsevier Ltd. All rights reserved.

The Michael addition of stabilized enolates with alkynoates constitutes a fundamental synthetic reaction, which normally yields *C*-conjugate Michael adducts. This classical reactivity can be circumvented by the addition of catalytic amount of *N*-methylmorpholine (NMM) or DABCO, which have been recently described to induce the formation of unusual *O*-conjugate Michael adducts **3** through the reactivity of ammonium intermediate **2** (Scheme 1).¹ On another hand, addition of nucleophiles at the α -position of these Michael acceptors are also possible through the catalysis of phosphines. This has been described using nitrogen-based nucleophiles providing a useful synthetic route to dehydroamino acids.² According to the described mechanism, the first step of the process

Scheme 1. Possible mechanisms of the reaction of stabilized enolates to ethylpropiolate 1a catalyzed by amines and phosphines.

Keywords: 1,3-Dicarbonyl compounds; Electrophilic alkyne; Nucleophilic α-addition; Acrylic esters; Dihydrothiophene. * Corresponding authors. Tel.: +33 (0)1 6908 2685; fax: +33 (0)1 6908 7991 (F.T.); e-mail: frederic.taran@cea.fr

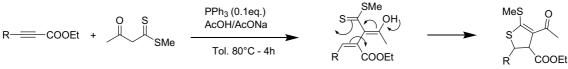
^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.07.135

involves a Michael addition of the phosphine to the alkynoate generating an active phosphonium intermediate (4, Scheme 1), which undergoes nucleophilic α -addition of the nitrogen nucleophile followed by a H⁺-transfer and elimination of the phosphine generating the product.

Based on these findings, $2^{a,3}$ we envisioned that intermediate **4**, although very similar to intermediate **2**, should

display complete different manifold by changing the regio- and chemo-selectivity of the addition–elimination reaction of stabilized enolates to propiolates. In this work, we explore the reactivity of carbonyl-based activated methylene toward such a reaction.

Using the system (PPh₃/AcOH/AcONa) described for nitrogen-based nucleophiles,² acetylacetone reacted with


Table 1. Synthesis of multifunctional acrylic esters

	R ² CO	OR ³ R ¹ EWG PPh ₃ , AcOH/AcONa Tol. 110°C	$R^{1} \rightarrow EWG$ $R^{2} \rightarrow COOR^{3}$	$ \begin{array}{c} $
Entry	Alkynoate	Activated methylene	PPh ₃ (equiv) time	Products ^a (yields) ^b
1	EXAMPLE COOR ³ 1a , $R^3 = Et$ 1b , $R^3 = Bn$ 1c , $R^3 = t$ -Bu		(0.1 equiv) 30 min	O OH COOR ³ 5a (88%) 5b (85%) 5c (83%)
2	1a	O O OEt	(0.3 equiv) 30 min	OH -COOEt 5d (56%) COOEt
3	1a		(0.3 equiv) 30 min	EtOOC \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow
4	1a		(0.1 equiv) 2 h	$ \begin{array}{c} & & \\ & & $
5	1a ^c		(0.2 equiv) 30 min	OH O OH EtO ₂ C CO ₂ Et 5g (23%)
6	PhCOOEt 1d		(0.2equiv) 19h	O COOEt 5h (62%)
7	1d	O O P-OEt OEt	(0.3 equiv) 17 h	COOEt 5i (50%)

^a All compounds have been fully characterized by using ¹H, ¹³C NMR, FT-IR, and mass spectroscopy.

^b Isolated yield.

^c 2equiv of ethyl propiolate were required for this reaction.

Scheme 2. Synthesis of 4,5-dihydrothiophenes derivatives.

alkylpropiolates **1a–c** exclusively through α -C-addition generating the desired product 5a-c in 83-88% yields (Table 1, entry 1). This reaction occurs for a range of enolates bearing electron withdrawing group in moderate to good yields.⁴ Low yields were sometimes obtained due to a degradation of the product or starting material but no α -O adducts neither Michael type adducts were observed. Increasing the quantity of PPh₃ was necessary to improve the yields when malonates or β -ketoesters are used as substrates (Table 1, entries 2 and 3). The reaction proceeds with 1,3,5-trione generating double α -C adduct with lower yield than for simple substrates (Table 1, entry 5). Ethylphenylpropiolate 1d participated well in this reaction, but required prolonged time of heating, to give the adducts 5h-i as a mixture of E-Zisomers (Table 1, entries 6 and 7).

This procedure represents an improvement of the synthesis of functionalized acrylic esters since many steps were required using the previous preparations.⁵

We then investigated the reaction using β -oxodithiobutyricacid methylester.⁶ Such compound is known to display thiol tautomeric forms,⁷ which are known to be excellent nucleophiles for Michael additions. We found that, even with this substrate, PPh₃ was able to completely reroute the reaction in favor of the α -*C*-addition. Under our experimental conditions, the resulting adduct undergo cyclization generating dihydrothiophenes **6a–b** in reasonable yields (Scheme 2).⁸ The *cis–trans* diastereoisomers of 3,4-dihydrothiophene **6b** were separated (*cis/trans* ratio: 1/4) and assigned on the basis of J_{H4-H5} values.⁹

In summary, we have shown that 1, 3-diketones, malonates, β -ketoesters, and β -ketophosphonates undergo ready α -*C*-addition to alkynoates through the catalysis of PPh₃. The functionalized acrylic esters obtained by this method are widely used as building blocks for many synthesis.

Moreover, using β -oxodithiocarboxylates the procedure allows a one step preparation of functionalized dihydro-thiophenes. This straightforward transformation should find useful applications in heterocycles chemistry.

References and notes

Tae, J.; Kim, K.-O. *Tetrahedron Lett.* 2003, 44, 2125–2128.
 (a) Trost, B. M.; Dake, G. R. J. Am. Chem. Soc. 1997, 119, 7595–7596; (b) Meunier, S.; Siaugue, J. M.; Sawicki, M.; Calbour, F.; Dézard, S.; Taran, F.; Mioskowski, C. J. Comb. Chem. 2003, 5(3), 201–204.

6a, R = H : 60% **6b**, R = Ph : 55%

- (a) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114, 7933–7935; (b) Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167–3168.
- 4. A typical procedure for functionalized acrylic esters synthesis: Under argon atmosphere, a mixture of 2,4pentanedione (1g; 10mmol), triphenylphosphine (262mg; 1 mmol), and sodium acetate (410 mg; 5 mmol) in toluene (20mL) was heated to reflux. After introduction of acetic acid (300 mg; 5 mmol) in one portion, ethyl propiolate (981 mg; 10 mmol) was added dropwise. The resulting mixture was stirred under reflux for 0.5h, filtered, and concentrated. Purification by flash chromatography (silica gel; hexane/ethyl acetate (90/10)) gave pure product (1.74g; 88% yield). The ¹H NMR spectrum allowed the identification of the desired α -C-addition product thanks to characteristic singlets corresponding to the olefinic signals. Spectral data for selected compounds. For 5a: colorless oil; $R_f = 0.3$ (Hex/EtOAc = 90/10); ¹H NMR (300 MHz, CDCl₃): $\delta = 16.29$ (s, OH enol), 6.59 (d, J = 1.8 Hz, 1H), 5.71 (d, J = 1.8 Hz, 1H), 4.23 (q, J = 7.3 Hz, 2H), 2 (s, 6H), 1.29 (t, J = 7.3 Hz, 3H); ¹³C NMR (75.47 Hz, CDCl₃): $\delta = 190.5$, 166.2, 136.6, 131.7, 110.1, 61.0, 23.3, 13.9; IR (NaCl, cm⁻¹) 1719, 1625, 1185; MS: *m*/*z* 221 [M+23]⁺. For **5f**: yellow oil; $R_f = 0.4$ (Hex/EtOAc = 30/70); ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3): \delta = 7.96 \text{ (d, 2H)}, 7.51-7.40 \text{ (m, 3H)},$ 6.51 (d, J = 4.9 Hz, 1H), 6.28 (d, J = 4.9 Hz, 1H), 5.63 (d, $J_{\text{HCP}} = 23.2$ Hz, 1H), 4.13 (m, 6H), 1.20 (m, 9H); ¹³C NMR $(75.47 \text{ Hz}, \text{ CDCl}_3)$: $\delta = 192.9$, 165.5 (d, $J_{\text{CP}} = 7.3 \text{ Hz}$), 136, 133.3, 130.9 (d, $J_{CP} = 9.8 \text{ Hz}$), 130.6 (d, $J_{CP} = 7.3 \text{ Hz}$), 128.7, 128.4, 62.9 (d, J_{CP} = 4.9 Hz), 62.5 (d, J_{CP} = 4.9 Hz), 61.4, 46.8 (d, $J_{CP} = 136.7 \text{ Hz}$), 16 (d, $J_{CP} = 7.3 \text{ Hz}$), 15.9 (d, $J_{CP} = 7.3 \text{ Hz}$), 13.8; ³¹P NMR (161.97 Hz, CDCl₃): $\delta =$ 19.2; IR (NaCl, cm⁻¹) 1711, 1686, 1625; MS: m/z 355 $[M+1]^+$.
- (a) Kraïem, H.; Abdullah, M.-I.; Amri, A. *Tetrahedron Lett.* 2003, 44, 553–555; (b) Béji, F.; Lebreton, J.; Villiéras, J.; Amri, H. *Synth. Commun.* 2002, 32, 3273–3278.
- 6. This compound was prepared according to published procedure: Thuillier, A.; Vialle, J. Bull. Soc. Chim. Fr. **1962**, 2182–2186.
- (a) Singh, G.; Bhattacharjee, S. S.; Ila, H.; Junjappa, H. Synthesis 1982, 693–694; (b) Duus, F. J. Am. Chem. Soc. 1986, 108, 630–638; (c) Duus, F. J. Org. Chem. 1977, 42, 3123–3127; Fabian, J. Tetrahedron 1973, 29, 2449–2456; (d) Duus, F. Synthesis 1985, 672–674.
- 8. The 4,5-dihydrothiophenes were obtained using identical procedure as for acrylic esters synthesis. Select data for *trans*-**6b**: beige crystal; $R_f = 0.24$ (Hex/EtOAc = 80/20); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.29$ (m, 5H), 5.02 (d, J = 3.0 Hz, 1H), 4.32 (d, J = 3.0 Hz, 1H), 4.17 (m, 2H), 2.45 (s, 3H), 2.21 (s, 3H), 1.22 (m, 3H); ¹³C NMR (75.47 Hz, CDCl₃): $\delta = 191.0$, 171.2, 163.1, 140.9, 128.9, 128.2, 126.4, 122.4, 62.3, 61.5, 53.9, 29.0, 17.7, 13.9; IR (NaCl, cm⁻¹) 1727, 1714, 1632, 1462, 1247; MS: m/z 323 [M+1]⁺. For *cis*-**6b**: beige crystal; $R_f = 0.18$ (Hex/EtOAc = 80/20); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.40$ (m, 2H), 7.29 (m, 3H), 5.41 (d, J = 9.8 Hz, 1H), 4.41 (d, J = 9.8 Hz, 1H), 3.77–3.63 (m, 2H), 2.554 (s, 3H), 2.15 (s, 3H), 0.81 (m, 3H); ¹³C NMR

(75.47 Hz, CDCl₃): δ = 190.7, 169.4, 164.4, 134.9, 128.2, 124.5, 60.6, 60.4, 55.4, 28.9, 17.7, 13.4; IR (NaCl, cm⁻¹) 1729, 1636, 1468, 1243; MS: *m*/*z* 345 [M+23]⁺.

 (a) Samet, A. V.; Shestopalov, A. M.; Nesterov, V. N.; Semenov, V. V. Synthesis 1997, 6, 623–624; (b) Dawood, K. M. Synth. Commun. 2001, 31, 1647–1658.